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Dynamical localization in quasiperiodic driven systems
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We investigate how the time dependence of the Hamiltonian determines the occurrence of dynamical local-
ization (DL) in driven quantum systems with two incommensurate frequencies. If both frequencies are asso-
ciated to impulsive terms, DL is permanently destroyed. In this case, we show that the evolution is similar to
a decoherent case. On the other hand, if both frequencies are associated to smooth driving functions, DL
persists although on a time scale longer than in the periodic case. When the driving function consists of a series
of pulses of duratiorr, we show that the localization time increasewag as the impulsive limito—0, is
approached. In the intermediate case, in which only one of the frequencies is associated to an impulsive term
in the Hamiltonian, a transition from a localized to a delocalized dynamics takes place at a certain critical value
of the strength parameter. We provide an estimate for this critical value, based on analytical considerations. We
show how, in all cases, the frequency spectrum of the dynamical response can be used to understand the global
features of the motion. All results are numerically checked.
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[. INTRODUCTION tum motion. As we shall see, the importance of the impulsive

Dynamical localization(DL), discovered numerically in or nonimpulsive character of the driving has been underesti-
1979[1], has attracted a great deal of attention after its eximated in the past, since it is at least as important for DL as
perimental realization in samples of cold atoms interactinghe number of independent frequencies in the Hamiltonian.
with a far-detuned standing wave of laser li2t. When the ~ Our conclusions are supported by numerical simulations of
light field is switched on and off periodically, the system canseveral characteristic systems.
be modeled by the kicked rotor Hamiltonian in a regime in In Sec. II, a kicked rotor with two driving frequencies is
which quantum effects are importa,4]. This notable se- introduced and it is shown that DL is impossible in this sys-
ries of experiments confirmed previous expectations regardem unless the frequencies are commensurable. We also in-
ing DL in periodically driven quantum systems. More re- troduce here an energy balance that will be of great impor-
cently, it has been reportd8] that the addition of a second tance in the following sections. In Sec. Ill, a quasiperiodic
driving frequency, incommensurate with the first, results indriven rotor without impulsive terms in the Hamiltonian is
the destruction of DL in the experimentally accessible timediscussed. It is shown that, in this kind of system, DL takes
scale. The important conceptual issue of whether the additioplace for arbitrary driving strengths provided that the classi-
of a second incommensurate frequency permanently destrog@l analog is chaotic. In Sec. 1V, an intermediate system, the
DL or just causes a substantial increase in the localizatiofnodulated kicked rotor, is considered in detail. In this kind
time, cannot be resolved experimentally. On the other handf multifrequency system, one driving frequency is associ-
numerical experiments alone are intrinsically unable to disated with the impulsive term and the other with a smoothly
tinguish between a very large increase in localization time/arying modulation factor. This system has a transition, from
and an effective suppression of DL. Thus, some theoreticdPcalized to diffusive dynamics, for kicking strengths above
insight on DL for nonperiodically driven systems is presently@ certain threshold. We show how this transition can be un-
required in order to provide an answer to this kind of ques-derstood within our theoretical framework and provide a
tion. concrete estimate for the threshold value for the particular

Most theoretical work on the subject has dealt with theexample that we consider. Finally, in Sec. V we present a
special case of periodically driven systefas7]. In compari- unifying discussion of these results and summarize our con-
son, little is known on the quantum dynamics of driven sys-clusions.
tems when the external field is not periodic. In this work we
present a basic theoretical framework that may lead to a
deeper understanding of DL and quantum diffusion in quasi- . TWO-FREQUENCY QUANTUM KICKED ROTOR

periodic systems. Our approach focuses in the relation be- Let us consider a quantum kicked rot@KR) to which a

tween the density of the Fourier spectrum of the dynamica| econd series of periodié kicks is applied. External kicks

response and the localized or diffusive character of the quari- - . .
P q occur at timeg=nT; andt=mT,, respectively (,m inte-

ger9 and we write the Hamiltonian as
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wherel is the moment of inertia of the rotoP, the angular
momentum operator, an; (K,) the strength parameter
for the series of kicks of period§, (T,). The rational or
irrational character of the ratio="T, /T, determines whether
the Hamiltonian(1) is periodic or quasiperiodic.

In the angular momentum representatié,)=/%|/),
the wave vector i$W (t))==7___a,(t)|/) and the average
energy isE(t)=(V|H|¥)=3%___E, |a,(t)|?>, whereE,
=/2h2[2| are the eigenvalues /2. As in the case of the
QKR, a quantum map

0

Z_ i~0-Dexd —iE;At, /113;- (Kkq)ay(ty)
)

is readily obtained from the Hamiltoniaid). In Eq. (2), we
refer to the instant immediately after théh kick ast,, and to
the time interval between two consecutive kicks A&f,
=t,,.1—t,. The argument of thkth order cylindrical Bessel
function J, is the dimensionless kick strength,=K, /%
that, for this system, takes only the two valuds, (2 or
K, /%) depending on the kind of then(+ 1)th kick. We will
useT=T, as the unit of time.

After a straightforward calculation involving the mé&p),
the energy increase due to tha+{1)th kick can be ex-
pressed as

a/(tn-%-l):j

2 2
E(n+1)—E(n)= 5 ?“Jrrn )
with
o0 . 1 .
FnEZKnImj:E_m it 5 |a(tyafa(tn)
[
XeXF{_%(Eﬁ_l_Ej)Atn}
2 0
n
_ 7Rej :2_00 aj(ty)al, »(tn)
[
Xex;{—%(EHZ—EJ)Atn} (4)

The ensemble average of E@) is proportional to the
diffusion rate in angular momentu@,,;APﬁ/T, if the kick
numbern is used as a measure of time. The amplitude
independent term in E(3) corresponds to the quasilinear
approximation to the classical diffusion coefficig¢s,

Dqi=

(5

N

where«? stands for the average value ©f. The remaining
terms, grouped ak,, in Eq. (3), depend on the wave vector
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FIG. 1. Energy(in units of 2/21) as a function of the kick
numbern for the two-frequency quantum kicked rotor. The evolu-
tion was generated from the m#&p) with «=3.279 andé=1.525.
Two values of the period ratio=T, /T, are shownr = 3/2 (thick
line) and r=+/2 (thin line). The dashed line corresponds to the

quasilinear approximation, E¢5). The initial state was taken to be
|/ =0).

terms: one due to classical diffusion and the otHef)(as-
sociated to quantum interference effects.

If the terms inI", have random phases, the sums are de-
coherent, and thus have negligible mean values. Therefore,
I',=0 and the system mimics a classical evolution, and the
average energy increases linearly with the number of kicks
with a slope given by Eq5). On the other hand, when DL
takes place, the average value of the sumisjmust cancel
out the independent term in E@) , sol',= — /2. This can
happen only if these sums are coherent. Thus, the long time
persistence of correlations among the amplituales taken
at a given time, is a necessary condition for DL to take place.
We emphasize this rather obvious fact because it plays a
fundamental role in the discussions in the rest of this paper.

We have performed a numerical study of the two-
frequency quantum kicked rotor described by the nf@p
with K;=K,. We write the two dimensionless parameters of
the standard QKR model as=K/# and é=#T/1. The pe-
riod ratio, r=T,/T,, is an additional parameter present in
the two-frequency version.

In Fig. 1, we show the evolution of the energy of the rotor
for a rational and irrational ratio of the two periods
=T,/T;. In the first case, the behavior is similar to the usual
one-frequency kicked rotor and the energy initially increases
in a diffusive way and then, after a characteristic time, it
localizes. In the second case, the results strongly suggest that
the diffusive behavior continues indefinitely and that in this
case dynamical localization does not take place. In fact, we
have checked that the energy increases at a rate consistent
with the quasilinear approximation to the classical diffusion
coefficient, Eq.(5), for at least 16 kicks (see Fig. 2

The results obtained for rationalcould be expected be-
cause, in this case, the system is equivalent to a kicked rotor
with a periodic train of pulses. For an irratiorralour results
can be better understood by considering a random rotor, de-

{a,/} and on the time interval between kicks. In sum, thefined as a kicked rotor for which kicks of fixed strengtlare

energy balance in Eq3), contains two qualitatively different

applied at uniformly distributed random time intervals. In
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6x10" — T T T ing amplitudesa, are substituted in Eq3), they result in a
negligible decoherent sum i, and the classical diffusion
5r 7] coefficient is obtained.
i~ It is interesting to remark that the previous discussion

m 4r ’ ] could have been expressed equally well in terms of the Fou-
5 L ] rier frequencies associated to the dynamics. In the quasiperi-
§ odic case, the time intervals between consecutive kicks are of
|50 i the form

1+ , ] 27T

Atn—lpTl—qul—mlpwz—lel, (7)

062000 4000 6000 8000 10000 . .
kick number n where p and q are arbitrary integers and, ,=27/T .
These time intervals are dense[id,T]. The corresponding
FIG. 2. Energy(in units of #2%/21) as a function of the kick frequencies,wpqz|pwz—qwﬂ, also form a dense set in
number,n, for the random rotor defined in the te()tthk Iine) and [waz]_ In other WOFdS, all frequencies are relevant for the
the two-frequency kicked rotor with= \/§ (thin Iine). The dashed dynamics and the time evolution of the energy mimics the
Iir_1e, parameters, and initial conditions are the same as those ifjassical chaotic diffusion, because the average separation
Fig. 1. between adjacent frequenciese is null. It is well known
that in the periodic QKR, DL is related to the discrete nature
this case, the magR) still holds, but the time interval be- of the quasienergy spectrum or, equivalently, to the fre-
tween consecutive kickAt,, is now a random variable uni- quency spectrum of the dynamical response. In fact, this
formly distributed in[0,T]. In Fig. 2, we compare the long spectrum is discrete in spite that a classical chaotic system
time evolution of the average energy of this random rotorhas a continuous frequency spectrum. However, due to the
with the corresponding quasiperiodic kicked rotor. The evo-uncertainty principle, this discreteness does not manifest it-
lution of the energy is essentially the same in both cases arngklf until a finite time of the order of Nw, whereAw is the
this suggests that the underlaying dynamics is very similar.average separation between adjacent frequencies. For shorter
In the case of the quasiperiodic QKR, the time sequencémes, the dynamical evolution “mimics” classical diffusion,
At,, is obtained from a systematic rule, once the period ratid.e., quantum diffusion takes place. At larger times, for which
r has been specified. In spite of this, all time intervals in thisthe discrete nature of the spectrum becomes manifest, the
sequence occur only once andras « the values ofAt, are  motion is exponentially localizel]. A similar argument for
dense and uniformly distributed {i0,T], as is the case for the quasiperiodic two-frequency kicked rotor leads us to con-
random time intervals. In both cases, numerical results corslude that in this case, in whichw =0, the localization time
firm thatr_n~0 and that classical-like diffusion takes place is infinite or, alternatively, that the addition of a second in-
indefinitely. The effect of these time intervals on the dynam-commensurable frequency permanently destroys DL in im-
ics can be made more explicit by rewriting the m@ in  pulsive systems, such as the QKR.
terms of the initial condition,
I1l. NONIMPULSIVE SYSTEMS

(i) j it In the preceding section, we have shown that quantum
a/ty)= 2 170 exp ~ % le Ej Atm diffusion takes place for ever in a quasiperiodic kicked rotor
Tdz--dne N in which the driving function has two impulsive components.
X3 k)i i (Kpoq) In this section, we consider the diffusive properties of
P g P PRVE A LIl . . .
smoothly driven quantum systems with two frequencigs
Xlesz(Ko)ajl(to). (6) andwz.

As an example, consider a rotor in which the driving force

consists of two series of periodic narrow pulses. Such a sys-
This expression can be applied to any of the systems disem is described by the Hamiltonian

cussed so fafperiodic, quasiperiodic, and rand@rithe only

difference between the localized and the diffusive cases is in p2

the sequence of time intervalst,,. In the familiar periodic H= 5 oSOl Ky (1) +Kafa(1)], (8)
case, when all time intervals are the same, it is well known

that the ampIi'tudesa'/ are exponentially localized. When where f,(t)=f,(t+T,) and f,(t)=f,(t+T,) are smooth
they are substituted in E¢3) a coherent sumresults Yy, periodic functions of time. Ifr=T,/T, is rational, the
which, as mentioned before, cancels on the average the clagymiltonian(8) is periodic and DL is expected to occur.rlf
§|cal diffusion coefficient and rgsults in a null mean energyis an jrrational number, recent experimental resiBisshow
increase. On thtilother hand, in the quasiperiodic case, thfat DL is destroyed or at least the localization time is in-
phases- (i/A)Zr21E; Aty (mod 2m), appearing in Eq6),  creased by an order of magnitude. In view of the discussion
form a dense, pseudorandom sef27]. When the result- of the preceding section, one might expect that unlimited
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diffusion would result also in this case. However, as we show 3x10° r — r r
below, DL persists in the quasiperiodic, nonimpulsive case. 2k T
In order to fix ideas, we specify each of the driving func- |
tions as a periodic sequence of Gaussian pulses of character- > ¢ L . I
istic width ¢, so that fors=1,2 o0 25 50 75 100
ﬂé 6x10 T T T T
1 (t—nTo— D)2 N
fy(t)= > exp[ - 9 g e . . .
o2 n=== 20 2 % 0 100 150 200
) ) g 3x10 T T T T
Without loss of generality we chooské;=0 and ®,=®.
Thus, the driving function in Eq(8) consists of a superpo-
sition of pulses of strengthKg that occur at times

T.,,2T¢, ... and®+T,,&+2T,, ... . In the limitc—0,
the pulses reduce té functions and the Hamiltoniai8)
reduces to Eq(l), describing a two-frequency kicked rotor.

As discussed in Sec. II, if is irrational, this system shows  FIG. 3. Kinetic energy(units of #/21) of the quantum forced
diffusion for ever. rotor described by Eq8) with Gaussian driving functions given by

At this point, there is one important difference to bear inEa. (9). Three c_haracteristic pulse widths are shown: upper panel
mind: in the classical kicked rotor, it is well known that for ¢/T=0.05, medium pane/T=0.03, and lower panef/T=0.01.
largeK (in practice,K=5 suffice all Kolmogorov-Arnold- Thekolt.her parameters dare f'ﬁed"qtz. K§.=3'279 ar_'lel'Sis' Thr.'e
Moser(KAM ) surfaces are destroyed and the energy increaslt ick lines correspond to the periodic case wit 312, 1 e thin
is unbounded8,9]. In contrast, for finites, the momentum ines to the quasiperiodic case witk 2, and the dashed lines to

S . the energy increase predicted by the quasilinear approximation to
spread is limited by the_ existence of K.AM surfaces for a”the classical diffusion coefficient, E@5). In all cases, the initial
values ofK. However, this upper bound in momentum space,

increases withK in a predictable formi10]. We have checked tséféz \gt?:ao?ausgan packet in the momentum representation, cen
that the classical phase space accessible in the time scales
considered here is completely chaotic, so that these KAM
boundaries do not affect our results.

The Schradinger equation for the Hamiltoniai8) can be

expressed in the angular momentum representation as

The dynamical response that emerges from @€§) in-
volves the differences of the frequencies in the Fourier spec-
trum of the driving functionf(t), that is, w,m=|nw,
—mw,|. We have previously introduced these frequencies in
i Eq. (7). As c—0 and the Gaussian modulation factor in Eq.
an+ [k f1()+rofa(t)](a,_1+aps 1) =0. (11) becomes unity, all harmonics af; and w, are equally
2 . ; ; )
(10) |mportant'|n Eq:(ll) and all thg differences,, appear with
equal weights in the dynamical response. In this case, the

We have numerically integrated this equation and calculateff€quency spectrum of the response is dense and there is no
the average energy as a function of time, for a sriaut ~ PL (sge Fig. 1 For finite o, _the Gaussw?m modulation factor
finite) pulse widthe. Our results are shown in Fig. 3, for €ffectively suppresses all high harmoniesX 1/07) from the
several values ofr. As expected, they depend strongly on Fourier speptrum of th(_a dr!vmg functhn. Then, iny a finite
the rational or irrational character of the ratie-T,/T,. In  number of linear combinations,,, are important in the dy-

the case of two commensurable frequendjesriodic driv- namical response, so the spectrum is effectively discrete and
ing) the rotor localizes after a few kicks. When the two fre- DL takes place. o
quencies are incommensurate, the system also localizes but The above mentioned 2 dependence of the localization

in a much longer time scale. The persistence of DL foundime can be understood recalling that, according to the argu-
here is in striking contrast with the case of impulsive drivingMment presented at the end of Sec. I, this time is inversely
discussed in Sec. Il. The localization time for quasiperiodicProportional to the average separation between adjacent fre-
driving increases as— 0, approximately asr 2. We ex- quenmesAw_. T_h_ls quantity is |_nversely propornc_)nal to the
plain this dependence below, but here we note that the locaiumber of significant frequencies, that appear in the dy-

iE,

an+ 7

ization time becomes infinite in the impulsive limit. namics of the system. Then, the localization time is propor-
We can understand these results by considering the Fodional to this number of relevant frequencies. Since only
rier transform of the driving functionf(t)=x,f(t) ~1lo h_armomcs of each fgndgmental frequency enter in the
+ k,f (1), given by dynamics, the number of significant frequencigg, and the
localization time, both increase ass/as o is reduced. We
— w202 o note that a similar argument has been used in the context of
Flw)= ——|«; Z S(w—Mwq) periodically driven systems to establish the proportionality of
o\2m m=—e the localization time to the number of quasienergies that par-
) ticipate in the dynamic§7].
+ iy z S(w—nwy)|. (11) Ar_10ther _example of a n_onimpul;ive, qlriven_ngntum sys-
n=—w tem is provided by a particle confined in an infinite square
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well with a periodically changing width.(t). This system, 5x10' ——mm —————1—————
known as the Fermi accelerator, shows DL when its classical
counterpart is chaotil1,12. We have considered a quasip- 4l i
eriodic version of this system in the context of nuclear dis-

sipation theory and found that the localization time increases m | |
by an order of magnitude but DL still takes pldde,14). An g

analysis completely analogous to the one presented above §

explains the persistence of DL in the quasiperiodic Fermi Q
accelerator as a consequence of the discreteness of the effec-

tive frequency spectrum of the dynamical response.

IV. MODULATED KICKED ROTOR 0500 1000 3002000

In Sec. Il, we have considered a kicked rotor driven by kick number n

two impulsive driving functions of different frequencies and  FIG. 4. Energy(in units of #2/2I) of the modulated quantum
showed that DL does not take place when the frequency ratikicked rotor, Eq.(12), as obtained from the quantum mép) for

is irrational. In contrast, in Sec. lll, we presented two ex-«—n given by Eq.(13). The thick line corresponds to the periodic
amples of smoothly driven quasiperiodic systems in whichcase withr =3/2 and the thin line to the quasiperiodic case with
DL persists, although in a longer time scale than in the peri=+/2. The initial state is the ground state of the unperturbed system,
odic case. We now consider an intermediate case in which’=0). The dashed line has a slope given by the quasilinear ap-
the driving function has two frequencies but only one ofproximation to the classical diffusion coefficient, E&), with the
them has an impulsive character, while the other one is agverage kicked strength from E(L4) . The other parameters are
sociated with a smooth function of time that multiplies the <=13.114 andf=1.525.

impulsive term.

Two examples of such systems have been discussed in As shown in the left panel of Fig. 5, for small valuesrof
Refs.[15,16. Here, we consider a simple periodic modula-the dynamics is localized. As is increased, the evolution of
tion so that the rotor is described by the Hamiltonian the energy shows a transition between a localized and delo-

calized dynamics. There is some critical value such that for

k<kerit» DL takes place after a characteristic time, but for
2 - K> Kk¢rip quantum diffusion persists for very long times. We

=5 TKcosd COSZ(ZWt/TZ)nZl 6(t=nTy), (120 have checked that the diffusion continues for at leagt 10

periods. Furthermore, as> «,;; the diffusion rate approxi-
which corresponds to a kicked rotor with a fixed interfal Mates the classical one. In fact, the same diffusion rate is
=T, between kicks and a kick strength modulated by a func_obtalned for a series of chks of random str.engths, obtained
tion of periodT,. We refer to the quantum version of this PY replacing the ratia/T in Eq. (12) by a uniform random
system as the modulated quantum kicked rotor. The (@ap
is still valid in this case if the time dependent kick strength is 8x10”
redefined as

H

6
Kn= Kk COS(27n/r). (13 /

Energy E

m

e
The evolution of the energy, obtained by iterating the map g ar F
(2) for the first 2000 kicks, is shown in Fig. 4. For ratiomal  §
the energy localizes as expected, since in this case the syste /
is periodic and equivalent to a QKR. Localization is broken 2 |
in the quasiperiodic cad@rationalr) and, in what follows, {4 @
we will focus our attention in this case. The dashed line in ,
Fig. 4 corresponds to the quasilinear approximation to the %= 50" 70 o0 80 100 077 10 10
diffusion coefficient, Eq(5) calculated for the average value kick number n kick number n
of the squared kick strength,

FIG. 5. Energy(units of #2/21) for the modulated quantum
kicked rotor as a function of kick numbaerfor three different kick

_ 1 N 3 strengths:(a) k=3.28, (b) k=6.56, and(c) k=13.11. The scale
K= N 2 Kﬁ:§K2_ (14 parameter has been fixed &t 1.525. In all cases, the dashed line
n=1 corresponds to the quasilinear approximation to classical diffusion.

In the right panel, the long time behavigrote the log-log scalg¢ss
The quantum diffusion, shown in Fig. 4, takes place at agiven. In the left panel, the detailed short-time evolution corre-
slower rate than the classical one. The reason for this slowe&ponding to the boxed region in the right panel is shown in a linear
guantum diffusion rate will soon become apparent. scale.
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variable in[ 0,1]. This kind of transition, between a localized diffusion for arbitrarily long times. The concrete mechanism
and a delocalized regime, has been reported in connectiaesulting in the destruction of DL can be seen in the energy
with other versions of the modulated kicked rofab,16. balance, Eq(3), introduced in Sec. Il. In the case of a dense
The existence of this transition, as well as the fact that thérequency spectrum, the interference term of this equation is
guantum diffusion rate is lower than the classical one, cam decoherent sum of null mean value. On the other hand,
both be understood from a detailed inspection of the (@ap when the response frequency spectrum has a discrete char-
We start by noting that since in this cad¢,=T, the only  acter, this sum is coherent and accounts for DL, as in the
time dependence in the coefficients in the right-hand side oRKR.
(2) appears in the argument of the Bessel function. The fre- We have considered three different kinds of quasiperiodi-
guencies introduced in the dynamics by this time dependencgally driven systems in Secs. lI-IV. The differences in their
can be made explicit by recalling the definition of the Besseldynamics can be understood in terms of the dense or discrete

function character of the frequency spectrum of the dynamical re-
sponse.
w Skt In the two-frequency kicked rotor, considered in Sec. Il,
I (k)= (—1)K 1 ﬁ) (15) the time intervals between kicks form a dense set and this
IV &0 kl(v+k)!'\ 2 produces a dense frequency spectrum in the response. Thus,

this system never localizes. In smoothly driven quasiperiodic

If the complex form of Eq(13) for «, is substituted in  systems, such as the rotor driven by pulses of duration
Eq.(15), a series of the fornx ,c,e'"*" is obtained, in which  discussed in Sec. IlI, the effective frequency spectrum has a
the coefficientsc, decay at a rate that depends enWhen  discrete character. We have shown that the average separa-
this series expansion fak, is substituted in Eq(6), aftern  tion between frequenciedw, is in this case proportional to
kicks each frequency will introduce harmonics in Eq(6).  ¢2. Then both, the number of relevant harmonics and the
More generally, if there arel relevant frequencies in Eq. |ocalization time, increase asdf as the impulsive limitor
(15), they introduceq” frequencies in Eq(6). Furthermore, .0 is approached. In the intermediate case of a modulated
when the energy is calculated from E8g), these frequencies kicked rotor, presented in Sec. IV, the character of the re-
produce phases that interfere between themselves giving riggonse spectrum depends on the kick strength parameter
to a localized or delocalized dynamics, depending on thés we have discussed, this parameter determines the number
value of x. An estimate of the critical valug; can be of significant linear combinations of the fundamental fre-
obtained by comparing the average over several kiek®,  quencies that appear in the dynamical response. This ex-
appearing in Eq(15), with unity, so thatk.,;;~4. plains the existence of a threshold.(;;~4) below which

This value is consistent with our numerical observationsDL takes place. Fok> ki;, the diffusion rate approaches
as implied by Fig. 5. Wherx=4, many frequencies are the classical one.
present with nonnegligible amplitudes in the Bessel function To conclude, we have established that quasiperiodically
(15). These frequencies result in a dense response spectrutiniven systems may delocalize even in the absence of cou-
when they are “amplified” in Eq(6). In this case the sums pling with its environment. This is possible when they are
in Eq. (4) are incoherenﬂ,ano and quantum diffusion takes driven by_ impulsive te_rr_ns wit_h two or more incommensyrate
place at a rate that gradually approaches the classical one #{gauencies. The additional incommensurate frequencies act
« is increased. On the other handifbecomes smaller, the @S & substitute for the coupling to a noisy environment. Fgr-
amplitudesc,, decay faster, fewer frequencies are relevant ithermore, we have shown that a strong causal connection
Eq. (15) and the response spectrum has a smaller densitﬁXIStS betwee_n DL and the density of the dynamlcal_ response
This produces quantum diffusion at a reduced rate as conpP€Ctrum. This spectrum can be used to characterize the dy-
pared to the classical rate. At some value4, there is a Namics in an analogous form as the quasienergy spectrum in
qualitative change in the dynamics as the response spectrupgriodically driven systems. Finally, we have shown that the
undergoes a topological change from dense to discrete. ThelfiPulSive or smooth character of the driving terms of the

h in Ea(3 h T — — «2/2 and DL tak Hamiltonian is as important for DL as the rational or irratio-
ltmgczums in Eq(3) are coherent’, = — /2 an takes  hal character of the frequency ratio.

Further work is required in order to understand how this
considerations can be extended to accommodate, for ex-
V. CONCLUSIONS ample, interactions with the environment.

All the results presented in this work can be understood in
terms of the general argument presented in the last paragraph
of Sec. Il, based on Heisemberg’s uncertainty principle. Ac-
cording to it, a time of the order of Ak is required in order We acknowledge the support of PEDECIBA and
to resolve a separatichw in the frequency domain. In par- CONICYT-Clemente EstabléProject No. 6026 R.D. ac-
ticular, when the dynamical response has a dense frequen&nowledges partial financial support from MCT/FINEP/
spectrumA w—0, and the quantum system mimics classicalCNPq(PRONEX under Contract No. 41.96.0886.00.
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