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Dynamical localization in quasiperiodic driven systems

G. Abal,* R. Donangelo,† A. Romanelli, A. C. Sicardi Schifino,‡ and R. Siri
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~Received 14 November 2001; published 11 April 2002!

We investigate how the time dependence of the Hamiltonian determines the occurrence of dynamical local-
ization ~DL! in driven quantum systems with two incommensurate frequencies. If both frequencies are asso-
ciated to impulsive terms, DL is permanently destroyed. In this case, we show that the evolution is similar to
a decoherent case. On the other hand, if both frequencies are associated to smooth driving functions, DL
persists although on a time scale longer than in the periodic case. When the driving function consists of a series
of pulses of durations, we show that the localization time increases ass22 as the impulsive limit,s→0, is
approached. In the intermediate case, in which only one of the frequencies is associated to an impulsive term
in the Hamiltonian, a transition from a localized to a delocalized dynamics takes place at a certain critical value
of the strength parameter. We provide an estimate for this critical value, based on analytical considerations. We
show how, in all cases, the frequency spectrum of the dynamical response can be used to understand the global
features of the motion. All results are numerically checked.
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I. INTRODUCTION

Dynamical localization~DL!, discovered numerically in
1979 @1#, has attracted a great deal of attention after its
perimental realization in samples of cold atoms interact
with a far-detuned standing wave of laser light@2#. When the
light field is switched on and off periodically, the system c
be modeled by the kicked rotor Hamiltonian in a regime
which quantum effects are important@3,4#. This notable se-
ries of experiments confirmed previous expectations reg
ing DL in periodically driven quantum systems. More r
cently, it has been reported@5# that the addition of a secon
driving frequency, incommensurate with the first, results
the destruction of DL in the experimentally accessible ti
scale. The important conceptual issue of whether the add
of a second incommensurate frequency permanently des
DL or just causes a substantial increase in the localiza
time, cannot be resolved experimentally. On the other ha
numerical experiments alone are intrinsically unable to d
tinguish between a very large increase in localization ti
and an effective suppression of DL. Thus, some theoret
insight on DL for nonperiodically driven systems is presen
required in order to provide an answer to this kind of qu
tion.

Most theoretical work on the subject has dealt with t
special case of periodically driven systems@6,7#. In compari-
son, little is known on the quantum dynamics of driven s
tems when the external field is not periodic. In this work w
present a basic theoretical framework that may lead t
deeper understanding of DL and quantum diffusion in qua
periodic systems. Our approach focuses in the relation
tween the density of the Fourier spectrum of the dynam
response and the localized or diffusive character of the qu
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tum motion. As we shall see, the importance of the impuls
or nonimpulsive character of the driving has been undere
mated in the past, since it is at least as important for DL
the number of independent frequencies in the Hamiltoni
Our conclusions are supported by numerical simulations
several characteristic systems.

In Sec. II, a kicked rotor with two driving frequencies
introduced and it is shown that DL is impossible in this sy
tem unless the frequencies are commensurable. We als
troduce here an energy balance that will be of great imp
tance in the following sections. In Sec. III, a quasiperiod
driven rotor without impulsive terms in the Hamiltonian
discussed. It is shown that, in this kind of system, DL tak
place for arbitrary driving strengths provided that the clas
cal analog is chaotic. In Sec. IV, an intermediate system,
modulated kicked rotor, is considered in detail. In this ki
of multifrequency system, one driving frequency is asso
ated with the impulsive term and the other with a smoot
varying modulation factor. This system has a transition, fr
localized to diffusive dynamics, for kicking strengths abo
a certain threshold. We show how this transition can be
derstood within our theoretical framework and provide
concrete estimate for the threshold value for the particu
example that we consider. Finally, in Sec. V we presen
unifying discussion of these results and summarize our c
clusions.

II. TWO-FREQUENCY QUANTUM KICKED ROTOR

Let us consider a quantum kicked rotor~QKR! to which a
second series of periodicd kicks is applied. External kicks
occur at timest5nT1 and t5mT2, respectively (n,m inte-
gers! and we write the Hamiltonian as

H5
P2

2I
1cosuFK1(

n51

`

d~ t2nT1!1K2 (
m51

`

d~ t2mT2!G ,

~1!

o,
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G. ABAL et al. PHYSICAL REVIEW E 65 046236
whereI is the moment of inertia of the rotor,P the angular
momentum operator, andK1 (K2) the strength paramete
for the series of kicks of periodsT1 (T2). The rational or
irrational character of the ratior 5T2 /T1 determines whethe
the Hamiltonian~1! is periodic or quasiperiodic.

In the angular momentum representation,Pul &5l \ul &,
the wave vector isuC(t)&5( l 52`

` al (t)ul & and the average
energy isE(t)5^CuHuC&5( l 52`

` El ual (t)u2, where El

5l 2\2/2I are the eigenvalues ofP2/2I . As in the case of the
QKR, a quantum map

al ~ tn11!5 (
j 52`

`

i 2( j 2l )exp@2 iE jDtn /\#Jj 2l ~kn!aj~ tn!

~2!

is readily obtained from the Hamiltonian~1!. In Eq. ~2!, we
refer to the instant immediately after thenth kick astn and to
the time interval between two consecutive kicks asDtn
[tn112tn . The argument of thekth order cylindrical Besse
function Jk is the dimensionless kick strengthkn[Kn /\
that, for this system, takes only the two values (K1 /\ or
K2 /\) depending on the kind of the (n11)th kick. We will
useT[T1 as the unit of time.

After a straightforward calculation involving the map~2!,
the energy increase due to the (n11)th kick can be ex-
pressed as

E~n11!2E~n!5
\2

2I Fkn
2

2
1GnG ~3!

with

Gn[2knIm (
j 52`

` S j 1
1

2Daj~ tn!aj 11* ~ tn!

3expF2
i

\
~Ej 112Ej !DtnG

2
kn

2

2
Re (

j 52`

`

aj~ tn!aj 12* ~ tn!

3expF2
i

\
~Ej 122Ej !DtnG . ~4!

The ensemble average of Eq.~3! is proportional to the
diffusion rate in angular momentum,Dn5DPn

2/T, if the kick
number n is used as a measure of time. The amplitud
independent term in Eq.~3! corresponds to the quasilinea
approximation to the classical diffusion coefficient@8#,

Dql5
k2

2
, ~5!

wherek2 stands for the average value ofkn
2 . The remaining

terms, grouped asGn in Eq. ~3!, depend on the wave vecto
$al % and on the time interval between kicks. In sum, t
energy balance in Eq.~3!, contains two qualitatively differen
04623
-

terms: one due to classical diffusion and the other (Gn) as-
sociated to quantum interference effects.

If the terms inGn have random phases, the sums are
coherent, and thus have negligible mean values. Theref
Gn50 and the system mimics a classical evolution, and
average energy increases linearly with the number of ki
with a slope given by Eq.~5!. On the other hand, when DL
takes place, the average value of the sums inGn must cancel
out the independent term in Eq.~3! , soGn52k2/2. This can
happen only if these sums are coherent. Thus, the long
persistence of correlations among the amplitudesal , taken
at a given time, is a necessary condition for DL to take pla
We emphasize this rather obvious fact because it play
fundamental role in the discussions in the rest of this pa

We have performed a numerical study of the tw
frequency quantum kicked rotor described by the map~2!
with K15K2. We write the two dimensionless parameters
the standard QKR model ask5K/\ and j5\T/I . The pe-
riod ratio, r[T2 /T1, is an additional parameter present
the two-frequency version.

In Fig. 1, we show the evolution of the energy of the rot
for a rational and irrational ratio of the two periodsr
[T2 /T1. In the first case, the behavior is similar to the usu
one-frequency kicked rotor and the energy initially increa
in a diffusive way and then, after a characteristic time,
localizes. In the second case, the results strongly sugges
the diffusive behavior continues indefinitely and that in th
case dynamical localization does not take place. In fact,
have checked that the energy increases at a rate cons
with the quasilinear approximation to the classical diffusi
coefficient, Eq.~5!, for at least 104 kicks ~see Fig. 2!.

The results obtained for rationalr could be expected be
cause, in this case, the system is equivalent to a kicked r
with a periodic train of pulses. For an irrationalr, our results
can be better understood by considering a random rotor,
fined as a kicked rotor for which kicks of fixed strengthk are
applied at uniformly distributed random time intervals.

FIG. 1. Energy~in units of \2/2I ! as a function of the kick
numbern for the two-frequency quantum kicked rotor. The evol
tion was generated from the map~2! with k53.279 andj51.525.
Two values of the period ratior[T2 /T1 are shown:r 53/2 ~thick
line! and r 5A2 ~thin line!. The dashed line corresponds to th
quasilinear approximation, Eq.~5!. The initial state was taken to b
ul 50&.
6-2
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DYNAMICAL LOCALIZATION IN QUASIPERIODI C . . . PHYSICAL REVIEW E 65 046236
this case, the map~2! still holds, but the time interval be
tween consecutive kicksDtn , is now a random variable uni
formly distributed in@0,T#. In Fig. 2, we compare the long
time evolution of the average energy of this random ro
with the corresponding quasiperiodic kicked rotor. The e
lution of the energy is essentially the same in both cases
this suggests that the underlaying dynamics is very simil

In the case of the quasiperiodic QKR, the time seque
Dtn is obtained from a systematic rule, once the period ra
r has been specified. In spite of this, all time intervals in t
sequence occur only once and asn→` the values ofDtn are
dense and uniformly distributed in@0,T#, as is the case fo
random time intervals. In both cases, numerical results c
firm that Gn'0 and that classical-like diffusion takes pla
indefinitely. The effect of these time intervals on the dyna
ics can be made more explicit by rewriting the map~2! in
terms of the initial condition,

al ~ tn11!5 (
j 1 , j 2 . . . j n11

i 2( j 12l )expF2
i

\ (
m51

n11

Ej m
DtmG

3Jj n112l ~kn!Jj n2 j n11
~kn21!•••

3Jj 12 j 2
~k0!aj 1

~ t0!. ~6!

This expression can be applied to any of the systems
cussed so far~periodic, quasiperiodic, and random!. The only
difference between the localized and the diffusive cases
the sequence of time intervalsDtn . In the familiar periodic
case, when all time intervals are the same, it is well kno
that the amplitudesal are exponentially localized. Whe
they are substituted in Eq.~3! a coherent sum results inGn ,
which, as mentioned before, cancels on the average the
sical diffusion coefficient and results in a null mean ene
increase. On the other hand, in the quasiperiodic case
phases2( i /\)(m51

n11 Ej m
Dtm ~mod 2p), appearing in Eq.~6!,

form a dense, pseudorandom set in@0,2p#. When the result-

FIG. 2. Energy~in units of \2/2I ) as a function of the kick
number,n, for the random rotor defined in the text~thick line! and
the two-frequency kicked rotor withr 5A2 ~thin line!. The dashed
line, parameters, and initial conditions are the same as thos
Fig. 1.
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ing amplitudesal are substituted in Eq.~3!, they result in a
negligible decoherent sum inGn and the classical diffusion
coefficient is obtained.

It is interesting to remark that the previous discuss
could have been expressed equally well in terms of the F
rier frequencies associated to the dynamics. In the quasip
odic case, the time intervals between consecutive kicks ar
the form

Dtn5upT12qT2u5
2p

v1v2
upv22qv1u, ~7!

where p and q are arbitrary integers andv1,252p/T1,2.
These time intervals are dense in@0,T#. The corresponding
frequencies,vpq[upv22qv1u, also form a dense set in
@0,v2#. In other words, all frequencies are relevant for t
dynamics and the time evolution of the energy mimics
classical chaotic diffusion, because the average separa
between adjacent frequencies,Dv is null. It is well known
that in the periodic QKR, DL is related to the discrete natu
of the quasienergy spectrum or, equivalently, to the f
quency spectrum of the dynamical response. In fact,
spectrum is discrete in spite that a classical chaotic sys
has a continuous frequency spectrum. However, due to
uncertainty principle, this discreteness does not manifes
self until a finite time of the order of 1/Dv, whereDv is the
average separation between adjacent frequencies. For sh
times, the dynamical evolution ‘‘mimics’’ classical diffusion
i.e., quantum diffusion takes place. At larger times, for whi
the discrete nature of the spectrum becomes manifest,
motion is exponentially localized@7#. A similar argument for
the quasiperiodic two-frequency kicked rotor leads us to c
clude that in this case, in whichDv50, the localization time
is infinite or, alternatively, that the addition of a second
commensurable frequency permanently destroys DL in
pulsive systems, such as the QKR.

III. NONIMPULSIVE SYSTEMS

In the preceding section, we have shown that quant
diffusion takes place for ever in a quasiperiodic kicked ro
in which the driving function has two impulsive componen
In this section, we consider the diffusive properties
smoothly driven quantum systems with two frequenciesv1
andv2.

As an example, consider a rotor in which the driving for
consists of two series of periodic narrow pulses. Such a s
tem is described by the Hamiltonian

H5
P2

2I
1cosu@K1f 1~ t !1K2f 2~ t !#, ~8!

where f 1(t)5 f 1(t1T1) and f 2(t)5 f 2(t1T2) are smooth
periodic functions of time. Ifr 5T2 /T1 is rational, the
Hamiltonian~8! is periodic and DL is expected to occur. Ifr
is an irrational number, recent experimental results@5# show
that DL is destroyed or at least the localization time is
creased by an order of magnitude. In view of the discuss
of the preceding section, one might expect that unlimi

in
6-3
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G. ABAL et al. PHYSICAL REVIEW E 65 046236
diffusion would result also in this case. However, as we sh
below, DL persists in the quasiperiodic, nonimpulsive cas

In order to fix ideas, we specify each of the driving fun
tions as a periodic sequence of Gaussian pulses of chara
istic width s, so that fors51,2

f s~ t !5
1

sA2p
(

n52`

`

expF2
~ t2nTs2Fs!

2

2s2 G . ~9!

Without loss of generality we chooseF150 and F25F.
Thus, the driving function in Eq.~8! consists of a superpo
sition of pulses of strengthKs that occur at times
T1,2T1 , . . . andF1T2 ,F12T2 , . . . . In the limit s→0,
the pulses reduce tod functions and the Hamiltonian~8!
reduces to Eq.~1!, describing a two-frequency kicked roto
As discussed in Sec. II, ifr is irrational, this system show
diffusion for ever.

At this point, there is one important difference to bear
mind: in the classical kicked rotor, it is well known that fo
largeK ~in practice,K*5 suffices! all Kolmogorov-Arnold-
Moser~KAM ! surfaces are destroyed and the energy incre
is unbounded@8,9#. In contrast, for finites, the momentum
spread is limited by the existence of KAM surfaces for
values ofK. However, this upper bound in momentum spa
increases withK in a predictable form@10#. We have checked
that the classical phase space accessible in the time s
considered here is completely chaotic, so that these K
boundaries do not affect our results.

The Schro¨dinger equation for the Hamiltonian~8! can be
expressed in the angular momentum representation as

ȧn1
iEn

\
an1

i

2
@k1f 1~ t !1k2f 2~ t !#~an211an11!50.

~10!

We have numerically integrated this equation and calcula
the average energy as a function of time, for a small~but
finite! pulse widths. Our results are shown in Fig. 3, fo
several values ofs. As expected, they depend strongly o
the rational or irrational character of the ratior 5T2 /T1. In
the case of two commensurable frequencies~periodic driv-
ing! the rotor localizes after a few kicks. When the two fr
quencies are incommensurate, the system also localize
in a much longer time scale. The persistence of DL fou
here is in striking contrast with the case of impulsive drivi
discussed in Sec. II. The localization time for quasiperio
driving increases ass→0, approximately ass22. We ex-
plain this dependence below, but here we note that the lo
ization time becomes infinite in the impulsive limit.

We can understand these results by considering the F
rier transform of the driving function f (t)5k1f 1(t)
1k2f 2(t), given by

F~v!5
e2v2s2/2

sA2p
Fk1 (

m52`

`

d~v2mv1!

1k2 (
n52`

`

d~v2nv2!G . ~11!
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The dynamical response that emerges from Eq.~10! in-
volves the differences of the frequencies in the Fourier sp
trum of the driving function f (t), that is, vnm5unv2
2mv1u. We have previously introduced these frequencies
Eq. ~7!. As s→0 and the Gaussian modulation factor in E
~11! becomes unity, all harmonics ofv1 andv2 are equally
important in Eq.~11! and all the differencesvnm appear with
equal weights in the dynamical response. In this case,
frequency spectrum of the response is dense and there
DL ~see Fig. 1!. For finites, the Gaussian modulation facto
effectively suppresses all high harmonics (v.1/s) from the
Fourier spectrum of the driving function. Then, only a fini
number of linear combinationsvnm are important in the dy-
namical response, so the spectrum is effectively discrete
DL takes place.

The above mentioneds22 dependence of the localizatio
time can be understood recalling that, according to the a
ment presented at the end of Sec. II, this time is invers
proportional to the average separation between adjacent
quencies,Dv. This quantity is inversely proportional to th
number of significant frequenciesvnm that appear in the dy-
namics of the system. Then, the localization time is prop
tional to this number of relevant frequencies. Since o
;1/s harmonics of each fundamental frequency enter in
dynamics, the number of significant frequenciesvnm and the
localization time, both increase as 1/s2 ass is reduced. We
note that a similar argument has been used in the contex
periodically driven systems to establish the proportionality
the localization time to the number of quasienergies that p
ticipate in the dynamics@7#.

Another example of a nonimpulsive, driven quantum s
tem is provided by a particle confined in an infinite squa

FIG. 3. Kinetic energy~units of \2/2I ) of the quantum forced
rotor described by Eq.~8! with Gaussian driving functions given b
Eq. ~9!. Three characteristic pulse widths are shown: upper pa
s/T50.05, medium panels/T50.03, and lower panels/T50.01.
The other parameters are fixed atk15k253.279 andj51.525. The
thick lines correspond to the periodic case withr 53/2, the thin
lines to the quasiperiodic case withr 5A2, and the dashed lines t
the energy increase predicted by the quasilinear approximatio
the classical diffusion coefficient, Eq.~5!. In all cases, the initial
state was a Gaussian packet in the momentum representation,
tered atl 50.
6-4
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DYNAMICAL LOCALIZATION IN QUASIPERIODI C . . . PHYSICAL REVIEW E 65 046236
well with a periodically changing widthL(t). This system,
known as the Fermi accelerator, shows DL when its class
counterpart is chaotic@11,12#. We have considered a quasi
eriodic version of this system in the context of nuclear d
sipation theory and found that the localization time increa
by an order of magnitude but DL still takes place@13,14#. An
analysis completely analogous to the one presented a
explains the persistence of DL in the quasiperiodic Fe
accelerator as a consequence of the discreteness of the
tive frequency spectrum of the dynamical response.

IV. MODULATED KICKED ROTOR

In Sec. II, we have considered a kicked rotor driven
two impulsive driving functions of different frequencies an
showed that DL does not take place when the frequency r
is irrational. In contrast, in Sec. III, we presented two e
amples of smoothly driven quasiperiodic systems in wh
DL persists, although in a longer time scale than in the p
odic case. We now consider an intermediate case in wh
the driving function has two frequencies but only one
them has an impulsive character, while the other one is
sociated with a smooth function of time that multiplies t
impulsive term.

Two examples of such systems have been discusse
Refs. @15,16#. Here, we consider a simple periodic modu
tion so that the rotor is described by the Hamiltonian

H5
P2

2I
1K cosu cos2~2pt/T2! (

n51

`

d~ t2nT1!, ~12!

which corresponds to a kicked rotor with a fixed intervalT
[T1 between kicks and a kick strength modulated by a fu
tion of periodT2. We refer to the quantum version of th
system as the modulated quantum kicked rotor. The map~2!
is still valid in this case if the time dependent kick strength
redefined as

kn[k cos2~2pn/r !. ~13!

The evolution of the energy, obtained by iterating the m
~2! for the first 2000 kicks, is shown in Fig. 4. For rationalr,
the energy localizes as expected, since in this case the sy
is periodic and equivalent to a QKR. Localization is brok
in the quasiperiodic case~irrational r ) and, in what follows,
we will focus our attention in this case. The dashed line
Fig. 4 corresponds to the quasilinear approximation to
diffusion coefficient, Eq.~5! calculated for the average valu
of the squared kick strength,

k2[
1

N (
n51

N

kn
25

3

8
k2. ~14!

The quantum diffusion, shown in Fig. 4, takes place a
slower rate than the classical one. The reason for this slo
quantum diffusion rate will soon become apparent.
04623
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As shown in the left panel of Fig. 5, for small values ofk
the dynamics is localized. Ask is increased, the evolution o
the energy shows a transition between a localized and d
calized dynamics. There is some critical value such that
k,kcrit , DL takes place after a characteristic time, but f
k.kcrit quantum diffusion persists for very long times. W
have checked that the diffusion continues for at least4

periods. Furthermore, ask@kcrit the diffusion rate approxi-
mates the classical one. In fact, the same diffusion rat
obtained for a series of kicks of random strengths, obtai
by replacing the ratiot/T2 in Eq. ~12! by a uniform random

FIG. 4. Energy~in units of \2/2I ) of the modulated quantum
kicked rotor, Eq.~12!, as obtained from the quantum map~2! for
k2n given by Eq.~13!. The thick line corresponds to the period
case withr 53/2 and the thin line to the quasiperiodic case withr
5A2. The initial state is the ground state of the unperturbed syst
ul 50&. The dashed line has a slope given by the quasilinear
proximation to the classical diffusion coefficient, Eq.~5!, with the
average kicked strength from Eq.~14! . The other parameters ar
k513.114 andj51.525.

FIG. 5. Energy~units of \2/2I ) for the modulated quantum
kicked rotor as a function of kick numbern for three different kick
strengths:~a! k53.28, ~b! k56.56, and~c! k513.11. The scale
parameter has been fixed atj51.525. In all cases, the dashed lin
corresponds to the quasilinear approximation to classical diffus
In the right panel, the long time behavior~note the log-log scales! is
given. In the left panel, the detailed short-time evolution cor
sponding to the boxed region in the right panel is shown in a lin
scale.
6-5
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G. ABAL et al. PHYSICAL REVIEW E 65 046236
variable in@0,1#. This kind of transition, between a localize
and a delocalized regime, has been reported in connec
with other versions of the modulated kicked rotor@15,16#.

The existence of this transition, as well as the fact that
quantum diffusion rate is lower than the classical one,
both be understood from a detailed inspection of the map~2!.
We start by noting that since in this caseDtn5T, the only
time dependence in the coefficients in the right-hand side
~2! appears in the argument of the Bessel function. The
quencies introduced in the dynamics by this time depende
can be made explicit by recalling the definition of the Bes
function

Jn~kn!5 (
k50

`

~21!k
1

k! ~n1k!! S kn

2 D 2k1n

. ~15!

If the complex form of Eq.~13! for kn is substituted in
Eq. ~15!, a series of the form(pcpeipvt is obtained, in which
the coefficientscp decay at a rate that depends onk. When
this series expansion forJn is substituted in Eq.~6!, after n
kicks each frequency will introducen harmonics in Eq.~6!.
More generally, if there areq relevant frequencies in Eq
~15!, they introduceqn frequencies in Eq.~6!. Furthermore,
when the energy is calculated from Eq.~3!, these frequencies
produce phases that interfere between themselves giving
to a localized or delocalized dynamics, depending on
value of k. An estimate of the critical valuekcrit can be
obtained by comparing the average over several kicks,kn/2,
appearing in Eq.~15!, with unity, so thatkcrit'4.

This value is consistent with our numerical observatio
as implied by Fig. 5. Whenk*4, many frequencies ar
present with nonnegligible amplitudes in the Bessel funct
~15!. These frequencies result in a dense response spec
when they are ‘‘amplified’’ in Eq.~6!. In this case the sum

in Eq. ~4! are incoherent,Ḡn'0 and quantum diffusion take
place at a rate that gradually approaches the classical on
k is increased. On the other hand, ifk becomes smaller, the
amplitudescp decay faster, fewer frequencies are relevan
Eq. ~15! and the response spectrum has a smaller den
This produces quantum diffusion at a reduced rate as c
pared to the classical rate. At some valuek&4, there is a
qualitative change in the dynamics as the response spec
undergoes a topological change from dense to discrete. T

the sums in Eq.~3! are coherent,Ḡn52k2/2 and DL takes
place.

V. CONCLUSIONS

All the results presented in this work can be understood
terms of the general argument presented in the last parag
of Sec. II, based on Heisemberg’s uncertainty principle. A
cording to it, a time of the order of 1/Dv is required in order
to resolve a separationDv in the frequency domain. In par
ticular, when the dynamical response has a dense frequ
spectrum,Dv→0, and the quantum system mimics classi
04623
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diffusion for arbitrarily long times. The concrete mechanis
resulting in the destruction of DL can be seen in the ene
balance, Eq.~3!, introduced in Sec. II. In the case of a den
frequency spectrum, the interference term of this equatio
a decoherent sum of null mean value. On the other ha
when the response frequency spectrum has a discrete
acter, this sum is coherent and accounts for DL, as in
QKR.

We have considered three different kinds of quasiperio
cally driven systems in Secs. II–IV. The differences in th
dynamics can be understood in terms of the dense or disc
character of the frequency spectrum of the dynamical
sponse.

In the two-frequency kicked rotor, considered in Sec.
the time intervals between kicks form a dense set and
produces a dense frequency spectrum in the response. T
this system never localizes. In smoothly driven quasiperio
systems, such as the rotor driven by pulses of durations,
discussed in Sec. III, the effective frequency spectrum ha
discrete character. We have shown that the average se
tion between frequencies,Dv, is in this case proportional to
s2. Then both, the number of relevant harmonics and
localization time, increase as 1/s2 as the impulsive limits
→0 is approached. In the intermediate case of a modula
kicked rotor, presented in Sec. IV, the character of the
sponse spectrum depends on the kick strength parametk.
As we have discussed, this parameter determines the num
of significant linear combinations of the fundamental fr
quencies that appear in the dynamical response. This
plains the existence of a threshold (kcrit;4) below which
DL takes place. Fork@kcrit , the diffusion rate approache
the classical one.

To conclude, we have established that quasiperiodic
driven systems may delocalize even in the absence of c
pling with its environment. This is possible when they a
driven by impulsive terms with two or more incommensura
frequencies. The additional incommensurate frequencies
as a substitute for the coupling to a noisy environment. F
thermore, we have shown that a strong causal connec
exists between DL and the density of the dynamical respo
spectrum. This spectrum can be used to characterize the
namics in an analogous form as the quasienergy spectru
periodically driven systems. Finally, we have shown that
impulsive or smooth character of the driving terms of t
Hamiltonian is as important for DL as the rational or irrati
nal character of the frequency ratio.

Further work is required in order to understand how t
considerations can be extended to accommodate, for
ample, interactions with the environment.
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